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Abstract

The study of complex social and technological systems, such as organizations,
requires a sophisticated approach that accounts for the underlying psycholog-
ical and sociological principles, communication patterns and the technologies
within these systems.

Social Network Analysis and link analysis have since inception operated
on the cutting edge bringing together mathematical analysis of social struc-
tures and qualitative reasoning and interpretation.

As available computing power grew, social network-based models have
become not only an analysis tool, but also a methodology for building new
theories of social behaviour and organizational evolution, frequently through
the creation of simulation models.

This work examines the past approaches of creating Social Network-based
semantically consistent and interpretable models of social structure and social
networks, as well as social simulation tools.

I propose the creation of a multi-theory, multi-level simulation model of
social structure that relies on social network theory and Artificial Intelligence
algorithms. I further propose the creation of a robust and scalable social
structure semantic that facilitates interpretable reasoning about evolution of
social structure.
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Chapter 1

Foreword

The study of complex social and technological systems, such as organizations,
requires a sophisticated approach that accounts for the underlying psycholog-
ical and sociological principles, communication patterns and the technologies
within these systems.

Since inception, Social Network Analysis and link analysis have operated
on the cutting edge bringing together mathematical analysis of social struc-
tures and qualitative reasoning and interpretation.

As available computing power grew, social network-based models have
become not only an analysis tool, but also a methodology for building new
theories of social behaviour and organizational evolution. This was frequently
done through the creation of simulation models that allowed researchers to
test theoretical constructs in a safe and ethical manner. Simulations also
facilitate large-scale experiments and Monte-Carlo simulations - which were
all but impossible in the qualitative analysis world due to cost, time and
ethical constraints.

This work can be though of as three functionally independent, yet inter-
locking parts. Part 1 is centered on issues of simulation of complex organiza-
tional networks in general, and covert terrorist networks in particular. The
simulation methodologies employed draw heavily on lessons learned from a
number of subfields of artificial intelligence - planning, knowledge represen-
tation, design of multi-agent systems, and optimization techniques such as
simulated annealing and randomized search.

Part 2 goes to the source of modern artificial intelligence — symbolic
reasoning and object-oriented knowledge representation — and adapts these
techniques to apply to qualitative machine reasoning on social structure and
social network data. As result of application of Al techniques, I propose a
solution to a long-standing problem of social network analysis — the problem
of representing the multi-faceted and complex world of human interactions
in a consistent, yet flexible way — and defining rigorous metrics that can be



applied to such data.

Part 3 is essentially an exercise in software engineering. It presents a set
of software tools that address numerous inconsistencies currently present in
treatment of social network data, from the day it is gathered to the day it is
published. The first tool is a design for a common and consistent toolchain
for integration of social network data gathering, analysis, simulation and
visualization tools. Further, I present an XML-based data interchange lan-
guage, which addresses the need for software tools to communicate rich social
network datasets consistently and efficiently. The final tool is an enhanced
SQL database designed specifically for handling, manipulating, merging and
searching massive graph and social network datasets.

While the three parts present work on essentially independent projects,
they carry a common underlying theme: the future of science of social net-
work analysis depends on mining large amounts of attribute-rich, multi-
modal, multi-plex, time-dependent data — and this can be successfully ac-
complished using lessons learned in the field of Artificial Intelligence.

1.0.1 Simulation of Complex Organizational Networks

These problems suggest the need for a new methodological approach. In
chapter 2, I provide an approach based on the use of a multi-agent network
model of the co-evolution of “observer” network (the blue network) and the
“terrorists” (the red network) in which the observers can capture only par-
tial data on the underlying covert network and the covert network evolves
both naturally and in response to attacks by the observers. This approach
builds off of organization theory and social network theory, as well as machine
learning and dynamic network analysis. Specifically, I have developed a com-
putational model of dynamic cellular organizations and used it to evaluate a
number of alternative strategies for destabilization of cellular networks.

Chapter 3 builds upon the findings in social network modelling, multi-
agent system engineering, and artificial intelligence to create an advanced
multi-agent model of terrorist networks and their evolution. I continue to
discuss techniques for sampling communications of a group of agents and
building a network representation of an adversarial team. A number of al-
gorithms and heuristics are tested through a set of virtual experiments, with
results presented. I further outline deficiencies in simple communication sam-
pling strategies such as snowball sampling, and present a new strategy based
on simulated annealing.

1.0.2 Inference in Semantic Social Networks

On March 11, 2004, a series of bombs went off in commuter trains in Madrid.
A few days later, I was poring over printouts of newspaper articles and work-



ing to extract the network of connections between suspected terrorists, and
link it to the existing data on Al Qaeda that I already possessed. Shortly
into the endeavor, I realized that most of the work I was doing consisted of
consciously throwing away information that was very relevant to the types
of people that were the terrorists, and to the types of connections they had
between each other and to the larger organization. Yet, most of that infor-
mation was not useable — the social network analysis paradigm simply had
no place for qualitative descriptions of nodes and edges. I then attempted
to design a consistent taxonomy of assigning weights to edges depending
on qualitative relationships, and realized that assigning weights to the the
edges was akin to comparing apples and oranges — the relationships were too
different to be encoded on the same numerical scale.

It is there that I realized that social network analysis can benefit from
a means to deal with social relational data in a qualitative, yet machine-
interpretable manner.

Most mathematical analysis and social simulation tools operate on ab-
stract numerical representations of social structures, such as graphs, matrices
and time series. However, the concrete semantics behind these numbers was
frequently only part of the researcher’s mental model. Its communication
to the outside world was largely a function of the researcher’s writing skills.
This, and the level of abstraction required by early computer models has
resulted in datasets and models that are very difficult to interpret, especially
by non-specialists.

In chapter 5, I describe creation of a language for modelling the semantics
behind social networks. The language incorporates object-oriented semantics
for expressing knowledge about complex social networks and builds upon
this semantics to create a robust system for searching and inference in social
networks.

A semantic approach to social network analysis essentially attempts to
capture and recreate qualitative reasoning in a machine-driven context. This
is done through modeling social networks as collections of interdependent
objects. Each of the objects is defined as a semantic term — i.e., contains
not only the data but also rules and methods for interpretation of the data.

The chief advantage of taking a semantic approach to reasoning about
social networks is the ability to consistently describe the interactions of nodes
and edges in multi-modal and multi-plex networks. Since the differences
of node edge types in such networks are semantic in nature, the semantic
encoding of the network structure allows the user to resolve combinatorial
closures across edge types, and decompose complex interactions into sets or
sequences of simpler ones.

For example, a long-standing problem in the field of social network analy-
sis concerns integration of data in a dual-mode network, incorporating friend-
ship and advice links. At this point, the notion of centrality in such a network
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is undefined both mathematically and semantically. However, by decompos-
ing the notions of friendship and advice into more basic semantic notions of
information transfer, affinity, respect and authority, a NetInference ontology
can be constructed to analyze the dual-mode network as a unit.

1.0.3 Enabling Technologies

To complete large-scale projects using sets of disparate tools such as data
collection, simulation, analysis and visualization software, an issue of software
interoperability must be addressed. Chapters 7 and 8 introduce the notions of
software toolchain and interoperability enhancing data interchange language.
Chapter 9 describes a relational database system used for accumulating large
datasets consisting of rich social network data.



Part 1

Artificial Intelligence and
Simulation of Complex Social
Systems



Chapter 2

NetWatch: Simulating and Reasoning
about Dynamic Covert Networks

Know your enemy and know
yourself; in a hundred battles,
you will never be defeated.

Sun Tzu, “The Art of War” ,6th
cent. B.C.

2.1 Background

For reasons of national security it is important to understand the properties
of terrorist organizations that make such organizations efficient and flexible.
Based on this understanding, strategies can be devised to destabilize such
organizations or curtail their efficiency, adaptability, and ability to move
knowledge and resources. The assessment of destabilization strategies poses
a number of key challenges. What does the underlying organization look
like? Does it evolve? How can the evolution of its structure be mapped
through observation? What strategies could be used to destabilize such an
organization? In this chapter, I provide an approach to assessing destabi-
lization strategies that draws on work in organization science, knowledge
management and computer science.

Terrorist organizations are often characterized as cellular — composed
of quasi-independent cells and featuring a distributed chain of command.
This is a non-traditional organizational configuration; hence, much of the
knowledge in traditional organizational theory, particularly that focused on
hierarchies or markets, is not directly applicable. Some lessons can be learned
from previous work on distributed and decentralized organizations. This
work demonstrates that such structures are often adaptive, useful in a volatile
environment, and capable of rapid response [Lin and Carley, 2003][Lawrence
and Lorsch, 1967]. In other words, one should expect terrorist organizations
to adapt, and adapt rapidly.

Organizational form or structural design profoundly influences its perfor-
mance, adaptability, and ability to move information [Baligh, Burton, and
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Obel, 1990]. Tt follows that organizations can be destabilized by altering their
structure. One caveat being that organizations, particularly more distributed
and decentralized ones, evolve continuously [Aldrich, 1999].

Terrorist organizations are often characterized as dynamic networks where
the connections among personnel define the nature of that evolution. This
suggests that social network analysis will be useful in characterizing the un-
derlying structure and in locating vulnerabilities in terms of key actors. Un-
fortunately, the dynamic nature of these networks makes it unclear whether
the actors identified as key using standard network analysis will remain key
long enough for destabilization tactics based on standard network analysis
to be effective.

A further complication relates to the fact that the only way to obtain
information about terrorist networks is by gathering intelligence — via signal
interception (SIGINT) or human intelligence (HUMINT) means. By their
nature, SIGINT and HUMINT techniques provide incomplete and frequently
inaccurate data, and the heuristics for learning shapes of covert networks
need to take this uncertainty into account. A cost factor is present as well
- each piece of information comes with a price and it would be prudent to
maximize its utility.

Organizations evolve as they face unanticipated changes in their envi-
ronment, along with rapidly evolving technologies and intelligent, adaptive
opponents. Over the past decade, progress has been made in understanding
the set of factors that enable adaptation and partially validated models of
adaptive networks now exist [Carley, 2002a]. A key result is that in the
short run, there appears to be a tradeoff between adaptivity and extremely
high performance in organizations [Carley and Ren, 2001].

Since the destabilization of terrorist networks could inhibit their ability
to effect harm, there is a profound need for an approach that would allow
researchers to reason about dynamic cellular networks and evaluate the po-
tential effect of destabilization strategies. To be useful, such an approach
must account for the natural evolution of cellular networks. This situation is
further complicated by the fact that the information available on the terrorist
network is liable to be incomplete and possibly erroneous. Hence, destabi-
lization strategies need to be compared and contrasted in terms of their ro-
bustness under varying levels and types of information error. In other words,
it would be misleading to judge destabilization strategies in terms of their
impact on a static network [Carley, Lee, and Krackhardt, 2002].

In this chapter, I provide an approach based on the use of a multi-agent
network model of the co-evolution of the “observer” network (the blue net-
work) and the “terrorists” (the red network) in which the observers can
capture only partial data on the underlying covert network and the covert
network evolves both naturally and in response to attacks by the observers.
This approach builds off organization theory and social network theory, as
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well as machine learning and dynamic network analysis. Specifically, I have
developed a computational model of dynamic cellular organizations and have
used it to evaluate a number of alternative strategies for destabilization of cel-
lular networks. A detailed description of the design decisions and techniques
that comprise the NetWatch methodology can be found in chapter 3.

It is important at the outset to note that this examination of destabiliza-
tion strategies is highly exploratory. I make no claims that the examination
of destabilization strategies is comprehensive, nor that the types of “error”
in the data that intelligence agencies can collect is completely described.
Further, our estimate of the structure of the covert network is based on pub-
licly available data much of which is qualitative and requires interpretation.
This work should therefore be read as a study in the power of an empirically
grounded simulation approach and a call for future research.

I restrict my analysis to a structural or network analysis and focus on what
the covert network looks like, how its structure influences its performance and
its ability to pass information, how it evolves, and how its path of evolution
can be altered (its behavior destabilized) through interventions focused on the
nodes. Admittedly, in this complex arena there are many other factors that
are critical but they are beyond the scope of this study. Thus, from a straight
social network perspective, this study suggests the types of methodological
issues that will emerge when working with dynamic large scale networks
under uncertainty.

To ground the ideas modelled by NetWatch, a short case description of
Al Qaeda is provided with the focus on the network structure. This is fol-
lowed by a discussion of the intelligence agencies engaged in anti-terrorist
activity and their intelligence-gathering methodologies. My intent here is to
demonstrate, at a fairly high level, the context and the resultant information
and modelling problems and not provide a full analysis for intelligence or
military operations. As good science often emerges from attacking hard real
world problems we are trying to provide sufficient detail to understand the
basis for the problems that research must address rather than simply provide
a high theoretical description of general data problems. This is followed by a
brief discussion of the applicability of traditional social network analysis and
the need to take a dynamic network perspective. I then describe a compu-
tational model of terrorist organizations as dynamic evolving networks and
anti-terrorist bodies with emphasis on their information collection and desta-
bilization strategies. A virtual experiment used to examine destabilization
strategies and the results are then discussed.



2.2 Covert Terrorist Networks - the Al Qaeda

Terrorism is a modus operandi through which targeted violence is used
against non-combatants in order to achieve political objectives or strate-
gic goals [Ruby, 2002]. Terrorist organizations can be classified as state-
sponsored or extra-national. State-sponsored terrorist organizations receive
direct support from their host countries. This support can manifest in var-
ious ways: financial aid to terrorists or terrorist organizations, training of
terrorist operatives, up to direct involvement of governmental units of the
state in terrorist attacks. Often such organizations serve as extensions of the
intelligence or secret service agencies of the host countries.

Activity of such organizations can often be effectively curtailed by po-
litical or military pressure upon the sponsoring countries. State-sponsored
organizations that receive direct assistance from the sponsor states also tend
to be organized in a hierarchical fashion similar to the rank structure of the
supporting army and essentially comprises an extension of one — and can
be fought with traditional military techniques.

Extra-national terrorist groups generally serve to advance the interests
of their leaders or direct backers (whether political, religious or commercial)
and span multiple nations in their search for operatives and resources. They
may enjoy support of one or several states whose political agendas coincide
with the goals of the organization - but ultimately are not dependent on
state support due to their ability to find independent financial backing from
wealthy sympathizers. Generally such groups are structured in a way similar
to organized crime syndicates and employ networks of quasi-independent
cells scattered through the operational region of the organization as well as
other countries that could be used as resource bases, recruiting and training
centers.

Al Qaeda, arabic for “The Base”, is the largest known extra-national
terrorist organization. In 2002, it was estimated to have the support of six
to seven million radical Muslims worldwide, of which 120,000 are willing to
take up arms [Gunaratna, 2002]. Its reach is global with outposts reported in
Europe, Middle East, East Asia and both Americas. In the Islamic world, its
task is to purify societies and governments according to a strict interpretation
of the Koran and to use religion as a unification force for the creation of an
Islamic superpower state.

In the non-Islamic world, its task is to compel governments to withdraw
their cultural influences and military ties from the Islamic world. While Al
Qaeda enjoys support of wealthy individuals in a number of countries, it
does not have direct support of any government. The Taliban government of
Afghanistan directly supported Al Qaeda by allowing them to create train-
ing centers and bases on their territory. The involvement of the Afghan
government was not crucial for the strength of the Al Qaeda organization.



In fact, the relationship between al Qaeda and the Taliban was more of an
exchange with the Taliban hosting the training bases and recruiting centers
and Al Qaeda providing the Taliban with trained soldiers and officers as well
as serving as a domestic security service within the country [Berry, 2001].

As Goolsby[Goolsby, 2003] stated, Al Qaeda extends its reach and re-
cruits new member cells via the adoption of local Islamic insurgency groups.
Beginning with provision of operational support and resources to facilitate
growth, Al Qaeda representatives work to transform an insurgency group
such as Jemaah Islamiyya (Indonesia) from a group seeking political change
to a full-fledged terrorist organization executing multi-casualty attacks such
as the Bali bombing in 2002[Group, 2002].

Al Qaeda’s global network, as we know it today, was created while it was
based in Khartoum, from December 1991 to May 1996. To coordinate its
overt and covert operations as Al Qaeda’s ambitions and resources increased,
it developed a decentralized, regional structure. Al Qaeda pursues its objec-
tives through a network of cells, associate terrorist and guerilla groups and
other affiliated organizations. For instance, the Sudanese, Turkish and Span-
ish nodes ran clandestine military activities in Europe and North America.

The worldwide cells appear to have no formal structure and no hierarchy.
Assignments are often carried out by individuals and small groups designated
for the purpose as “the person responsible”. The regional nodes appear not
to have a fixed location and move quickly when dictated by the political
situation in the region. Al Qaeda operatives share expertise, provide re-
sources resources, discuss strategy and eventually conduct joint operations
with regional terrorist groups.

Although the modus operandi of Al Qaeda is cellular, familial relationships
play a key role. As an Islamic cultural and social network, Al Qaeda members
recruit from among their own nationalities, families and friends. What gives
Al Qaeda its global reach is its ability to appeal to Muslims irrespective
of their nationality, enabling it to function in East Asia, Russia, Western
Europe, Sub-Saharan Africa and North America with equal facility.

Unlike conventional military forces which are hierarchical and centralized,
terrorist militant units are generally small, geographically dispersed and, at
the first glance, disorganized. Nevertheless, they have been able to effectively
counter much larger conventional armies. Large terrorist organizations oper-
ate in small, dispersed cells that can deploy anytime and anywhere [Ronfeldt
and Arquilla, 2001]. Dispersed forms of organization allow these networks to
operate elusively and secretly.

The apparent structure of the Al Qaeda is not exclusive to such militant
or terrorist groups. Indeed, they bear a familiar resemblance to the struc-
ture of other resistance groups. For example, a study published in 1970 by
L. Gerlach and V. Hine [L.P.Gerlach and V.H.Hine, 1970] concluded that

U.S. social movements, such as the environmental and anti-war movements
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in the 1960s, were structured as “segmented, polycentric, and ideologically
integrated networks” (SPINs):

“By segmentary I mean that it is cellular, composed of many dif-
ferent groups... . By polycentric I mean that it has many different
leaders or centers of direction... . By networked I mean that the
segments and the leaders are integrated into reticulated systems or
networks through various structural, personal, and ideological ties.
Networks are usually unbounded and expanding... . This acronym
[SPIN] helps us picture this organization as a fluid, dynamic, ex-
panding one, spinning out into mainstream society.”

The dynamics exhibited by SPINs appear to exist in both these social
movement groups as well as in various terrorist, criminal and fundamentalist
networks around the world [Ronfeldt and Arquilla, 2001].

However, unlike many protest movements, terrorist and criminal networks
must remain covert. The need for security dictates that terrorist organiza-
tions must be structured in a way that minimizes damage to the organization
from arrest or removal of one or more members [Erickson, 1981]. This dam-
age may be direct - making key expertise, knowledge or resources inaccessible
for the organization, or indirect - exposing other members of the organiza-
tion during interrogations. There are several factors that allow a terrorist
organization to remain covert, including:

e Strong religious (in case of Islamic groups) or ideological (in case of
Sendero Luminoso and other South American guerilla groups) views
that allow members to form extremely strong bonds within a cell.

e Physical proximity among cell members, often to the extent of sharing
living quarters, working and training together.

e Lack of rosters on who is in which cell.

e Cell members being given little knowledge of the organizational struc-
ture and the size of the organization.

e Inter-cell communication on as-needed basis only.

e Information about tasks issued on a need-to-know basis so very few
people within the organization know about the operational plans in
their entirety.

A need-to-know information policy can be counterproductive when an or-

ganization needs to complete a task that is larger than any one cell. Further,
such policies tend to lead to duplication of effort and reduce the ability of one
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cell to learn from another. To fix these inefficiencies, terrorist organizations
have been known to employ “sleeper links” - where a small number of mem-
bers of each cell have non-operational ties (such as family ties, ties emerging
from common training, etc) to members of other cells [Krebs, 2001]. These
links are rarely activated and are used mainly for coordinating actions of
multiple cells in preparation for a larger operation.

To remain covert, the Al Qaeda has structured itself as a leaderless de-
sign characterized by its organic structure, horizontal coordination, and dis-
tributed decision making. However, the need to maintain a strong ideo-
logical foundation and resolve coordination issues has led to the need for
strong leadership. One apparent solution has been to have multiple lead-
ers diffused throughout the network and engaged in coordinating activities
without central control or a hierarchy among the cells. Whether the leaders
are themselves hierarchically organized, even though the cells are not, is less
clear.

Under constant pressure from various world governments, terrorist or-
ganizations have evolved a structure that appears to be resilient to attacks.
However, information on these terrorist organizations, their membership, the
connections among the members is, at best, incomplete. Available informa-
tion is often obtained during post-factum investigations of terrorist acts and
may offer little insight into the “main body” of the organization or the way
in which it is evolving.

Substantial intelligence effort is needed to piece together the massive
amount of often misleading information, both post-factum and “logs” of ac-
tivity, to generate a picture of the entire organization. Nevertheless, the
picture that is emerging suggests that terrorist organizations are organized
at the operational level as cellular networks rather than as hierarchies [Carley,
2003a).

2.3 Open-Source Data on Terrorist Networks

Until recently, social network datasets were extremely difficult to obtain and
limited in size and scope. The prevailing methodology for collecting social
network data was by survey, either administered to an entire group of people
or collected in a snowball fashion. Collection of social network data was done
in a way reminiscent of anthropological data collection - by a human observer
embedded into an organization to be studied.

This presented a number of problems. First of all, it was very costly
to collect all but the smallest of datasets. While a number of sampling
strategies were investigated, it was difficult or infeasible to canvass a larger
organization or population. Furthermore, presence of an observer or a survey
instrument in an organization inevitably altered the behaviour of individuals
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Figure 2.1: Data on Hamas collected by AutoMap

in the organization.

Finally, for some networks, especially terrorist networks, it is physically
impossible to collect a dataset via direct survey administration. The modus
operandi of such networks is covertness and this necessarily limits the data
that can be collected on them.

Thus, for study of terrorist organizations, one must obtain information
via indirect means. One approach to gathering indirect social network data
is via analysis of texts. Originally used as manual coding technique, text
analysis has now been automated to extract network structure from corpora
of text based on co-appearance of people, organizations and other entities.

Between September 14, 2001 and November, 2001 Valdis Krebs[Krebs,
2001] assembled a corpus of texts regarding events preceding September 11th
attacks. Manual analysis of these texts yielded a dataset (see figures 2.1
and 2.2) which became one of the definitive sources of data on terrorist
organizations and structure of a terrorist plot.

Since 2001, much larger datasets on covert networks are available due to
both increased interest in the research and improvements in tools for machine
collection of network data.

Some of the newer more complete datasets include these collected by
IntelCenter|IntelCenter.com, 2003, R. Renfro[Renfro, 2003] and M. Sage-
man[Sageman, 2004]

In the aftermath of the September 11th attacks, it was noted that coher-
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ent information sources on terrorism and terrorist groups were not available
to researchers|Gruenwald, McNutt, and Mercier, 2003]. Information was ei-
ther available in fragmentary form, not allowing comparison studies across
incidents, groups or tactics, or made available in written articles - which are
not readily suitable for quantitative analysis of terrorist networks. Data col-
lected by intelligence and law-enforcement agencies, while potentially better
organized, is largely not available to the research community due to restric-
tions in distribution of sensitive information.

To counter the information scarcity, a number of institutions developed
unified database services that collected and made available publicly accessible
information on terrorist organizations. This information is largely collected
from open source media, such as newspaper and magazine articles, and other
mass media sources.

Such open-source databases include:

e RAND Terrorism Chronology Database[Corporation, 2003] - including
international terror incidents between 1968 and 1997

e RAND-MIPT (Memorial Institute for Prevention of Terrorism) Terror-
ism Incident Database[Houghton, 2002], including domestic and inter-
national terrorist incidents from 1998 to the present

e MIPT Indictment Database[Smith and Damphousse, 2002] - Terrorist
indictments in the United States since 1978.

Both RAND and MIPT databases rely on publicly available informa-
tion from reputable information sources, such as newspapers, radio and
television.

e IntelCenter Database (ICD)[IntelCenter, 2005] includes information on
terrorist incidents, groups and individuals collected from public sources,
including not only traditional media outlets and public information
(such as indictments), but also information learned from Middle East-
based news wire services. Separately, IntelCenter also collects informa-
tion from Arabic chat-rooms and Internet-based publications - although
value of such data is questionable and data may be tainted by propa-
ganda.

2.4 Terrorist Organizations and Scale-Free Net-
works

An argument has been made[Robb, 2004] that terrorist networks may exhibit
features of scale-free networks and can thus be treated as such in analysis
and derivation of attack scenarios.
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Scale-free networks have been observed in many contexts ranging from
networks of airline traffic to sexual networks and Web link patterns. The
high probability of emergence of scale-free networks, as opposed to evenly
distributed random networks, is due to a number of factors, including:

e Rapid growth confers preference to early entrants. The longer a node
has been in place the greater the number of links to it. First mover
advantage is very important.

e In an environment of too much information people link to nodes that are
easier to find - thus nodes that are highly connected. Thus preferential
linking is self-reinforcing.

e The greater the capacity of the hub (bandwidth, work ethic, etc.) the
faster its growth.

It has also been observed that scale-free networks are extremely tolerant of
random failures. In a random network, a small number of random failures can
collapse the network. A scale-free network can absorb random failures up to
80% of its nodes before it collapses. The reason for this is the inhomogeneity
of the nodes on the network — failures are much more likely to occur on
relatively small nodes.

However, scale-free networks are extremely vulnerable to intentional at-
tacks on their hubs. Attacks that simultaneously eliminate as few as 5-15% of
a scale-free network’s hubs can collapse the network. Simultaneity of an at-
tack on hubs is important. Scale-free networks can heal themselves rapidly if
an insufficient number of hubs necessary for a systemic collapse are removed.

Scale-free networks are also very vulnerable to epidemics. In random net-
works, epidemics need to surpass a critical threshold (a number of nodes in-
fected) before it propagates system-wide. Below the threshold, the epidemic
dies out. Above the threshold, the epidemic spreads exponentially. Recent
evidence[Pastor-Satorras and Vespignani, 2001] indicates that the threshold
for epidemics on scale-free networks is zero.

However, the reality of terrorist networks does not fit neatly into the
scale-free network model. It has been observed[Rothenberg, 2002] that non-
state terrorist networks are not only scale-free but also exhibit small world
properties. This means that while large hubs still dominate the network, the
presence of tight clusters (cells) continue to provide local connectivity when
the hubs are removed.

For example, attack on Al Qaeda’s Afghanistan training camps did not
collapse its network in any meaningful way. Rather, it atomized the network
into anonymous clusters of connectivity until the hubs could reassert their
priority again. Many of these clusters will still be able to conduct attacks
even without the global connectivity provided by the hubs.
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Furthermore, critical terrorist social network hubs cannot be identified
based on the number of links alone. For example, Krebs observed|Krebs,
2001] that strong face-to-face social history is extremely important for trust
development in covert networks. Of similar importance is the relevance of
skills and training of agents inside a cell to the task at hand. Thus, im-
portance of any individual within the network should be rated on a vector
of factors pertaining to its qualities as an individual as well as types and
qualities of its links.

Rothenberg[Rothenberg, 2002] notes that postulating a path of a set
length from everyone in the global network to everyone else (i.e. scale-free
nature of a terrorist network) runs contrary to the instructions for communi-
cation infrastructure set forth in the Al Qaeda training manual[Al-Quaeda,
2001]. Thus, if a terrorist network was observed to be scale-free, it can be
argued that its scale-free nature is not a matter of design and can possi-
bly be an artifact of the data collection routines. For example, snowball
sampling[Granovetter, 1976] is biased toward highly connected nodes, so ex-
tensive use of this technique may result in observation of scale-free core-
periphery structures where none exist[Biernacki and Waldorf, 1981].

2.5 Developing the Formalism of a Cellular
Network

Given the case studies of Al Qaeda and other terrorist networks, it is clear
that terrorist organizations cannot be adequately described as random graphs
or as scale-free networks. Therefore, a different model of terrorist networks
has emerged, namely cellular networks [Rothenberg, 2002][Carley, Dombroski,
Tsvetovat, Reminga, and Kamneva, 2003|[Carley, Lee, and Krackhardt, 2002].
While this model may not fit a simple mathematical definition such as scale-
free or small-world network, its base is in empirical and field data]Goolsby,
2003]. In section 6.0.1, I will show that cellular networks in fact are not
characterized by a lack of a formal representation but are defined through a
more complex process which takes as a goal improvement of fit between the
model network and empirical data.

Cellular networks[Carley, 2003a] are different from traditional organiza-
tional forms as they replace a hierarchical structure and chain of command
with sets of quasi-independent cells, distributed command, and rapid abil-
ity to build larger cells from sub-cells as the task or situation demands. In
these networks, the cells are often small and are only marginally connected to
each other. The cells are distributed geographically, and may take on tasks
independently of any central authority[Carley, 2003b].

Rothenberg[Rothenberg, 2002] observed a number of properties of a cel-
lular network:
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e The entire network is a connected component.

.1t is likely that on the local level, individual ties are very
strong...On the higher level, individual ties are likely to be
weaker but the strength of association [people known in com-
mon, doctrine] is likely to remain high...

e The network is redundant on every level: Each person can reach other
people by multiple routes - which can be used for both transmission of
information as well as material. On the local level, there will be a con-
siderable structural equivalence|[T'svetovat and Carley, 2005], which will
ameliorate the loss of an individual. The redundancy in communication
channels may also be mirrored in the redundance of groups engaged in
a particular task.

e On the local level, the network is small and dynamic, consisting of
small cells (4-6 people) that operate with relative independence and
little oversight on the operational level.

e The network is not managed in a top-down fashion. Instead, its com-
mand structure depends on vague directives and religious decrees, while
leaving local leaders the latitude to make operational decisions on their
own.

e The organizational structure of a terrorist network was not planned,
but emerged from the local constraints that mandated maintenance of
secrecy balanced with operational efficiency.

Each cell is, at least in part, functionally self-sufficient and is capable of
executing a task independently. Cells are loosely interconnected with each
other for purposes of exchanging information and resources. However, the
information is usually distributed on a need-to-know basis and new cell mem-
bers rarely have the same exact skills as current members. This essentially
makes each individual cell expendable. The removal of a cell generally does
not inflict permanent damage on the overall organization or convey signifi-
cant information about other cells. Essentially, the cellular network appears
to morph and evolve fluidly in response to anti-terrorist activity[Sageman,
2004].

This leads to a hypothesis that cells throughout the network contain
structurally equivalent[F.Lorrain and White, 1971] and essential roles, such
as ideological or charismatic leaders, strategic leaders, resource concentrators
and specialized experts.

Given this hypothesis, one can further reason that operations of a partic-
ular cell will be affected in a negative way by the removal of an individual
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filling one of these roles. I further posit that a further development of a cellu-
lar network formalism as an empirically driven and yet mathematically sound
concept, is necessary for creation of computational models that combine face
validity towards real-world data as well as veridicality towards formal models
of organizational evolution.
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2.6 Robust Representation of Organizational
Data

Traditional social network analysis (SNA) techniques have focused on anal-
ysis of communication networks between individuals. Moreover, most SNA
studies have been conducted on single-mode networks (i.e. relationships be-
tween people) with binary data (i.e. presence or absence of a connection).
Also, most studies have been concerned with analysis of a single network.

Krackhardt and Carley [Krackhardt and Carley, 1998] proposed concen-
trating knowledge about an organization in a format that could be analyzed
using standard network methods, called the MetaMatrix. The MetaMatrix
approach treats organizations as evolving networks. Actors in these net-
works actively engage in processes defined as task performance, knowledge
exchange and resource transfer. This conceptualization made it possible to
link organizational performance to social networks.

Carley [Carley, 1999] [Carley, 2002¢| generalized this approach and ex-
tended the perspective into the realm of knowledge networks enabling the
researcher to question how changes in the social network could effect changes
in the distribution of information and the resultant impact of knowledge dis-
ruption strategies on organizational performance. By taking an information
processing perspective we are explicitly linking knowledge management and
social networks[Carley and Hill, forthcoming] and enabling network evolution
through learning mechanisms. From a conceptual and data perspective this
means that we examine the co-evolution of all networks in the meta-matrix
as described in table 2.1.

2.6.1 MetaMatrix Measures

A number of metrics have been defined on the MetaMatrix models. These
metrics can be used to estimate the likelihood of a new link being formed
between two agents, and find critical or redundant nodes in the network and
locate emergent leaders based on their cognitive demand.

Homophyly and Relative Expertise

The following two measures are used to estimate the probability of creation
of a new communication link in the social network or the motivation to
communicate. Empirical studies of human communication behavior suggest
that, without any external motivation, individuals will spend about 60% of
the time interacting on the basis of homophyly and 40% on the basis of need.

Carley has defined homophyly[Carley, 2002¢| to be based on a measure of
relative similarity RS between agent ¢ and agent j: the amount of knowledge
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People Knowledge Resources Tasks
and Skills
People Structural Knowledge Resource Task Assign-
knowledge: Network: Network: ment:  who
command who has ac- | who can | does which
structures cess to what | use what | tasks
and rela- | knowledge resources
tionships
between
agents
Knowledge Knowledge Resource Skill Re-
Precedence: Skills:  skills | quirements:
types of | needed to use | skills needed
skills that go | a resource to accom-
together plish a task
Resource Resource Resource Re-
Precedence: quirements:
which types | Which  re-
of resources | sources are
go together needed to
accomplish a
task
Task Task Prece-
dence:  the
sequencing
and  prece-
dence of
tasks.

Table 2.1: Meta-Matrix of Organizational Knowledge

that ¢ and j have in common divided by the amount ¢ shares with all other
agents (including self), or

S o(SiwSir)
Zfzo Zf:o(sikzslk)

where S;; is 1 if agent ¢ knows fact k£ and 0 otherwise.

In contrast, relative expertise is defined from a purely knowledge perspec-
tive: how much agent ¢ thinks 7 knows that ¢ does not know divided by how
much ¢ thinks all others know that i does not know, or

RE;: — [Ziiol(((l — Sik) * Sjk) (2.2)
ZZ:O Zk:o((l - Sz‘k) * Slk)

RS;; = (2.1)
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Cognitive Demand: Finding emergent leaders

Cognitive demand, described by Carley [Carley and Ren, 2001], measures the
amount of effort each person expends in performing actual tasks using the
knowledge, resource, task and communication networks of the MetaMatrix.

Cognitive demand is a notion similar to the task load measure developed
at NASA [Hart and Staveland, 1988]. It measures the extent to which the
person has to engage in mental activity to do the assigned tasks, defined as:

1. number of people person i interacts with / total number of people in
the group

2. number of tasks person i is assigned to / total number of tasks

3. sum of number of people who do the same tasks person i does / (total
number of tasks * total number of people)

The cognitive demand measure combines static measures of centrality
with dynamic measures of information flow, task performance and resource
distribution. These measures are based on the meta-matrix knowledge about
the organization and have been shown to accurately detect emergent leaders
in an organization.

Key players: Task and Knowledge Exclusivity

Understanding the relative criticality of employees is important in manag-
ing turnover and security risks associated with human capital in organi-
zations. Traditional social network analysis measures are based on static,
survey-based assessments of centrality and other sociometric aspects of or-
ganizations. This limits their effectiveness in fully evaluating human capital
criticality, particularly criticality that may be "hidden” in the non-social
dimensions of an organization.

M. Ashworth and K. Carley [Ashworth and Carley, 2002][Ashworth, 2003]
introduced new task- and knowledge-based measures based on the MetaMa-
trix[Krackhardt and Carley, 1998] designed to overcome such limitations.
Their results suggest that while each class of measures provides useful in-
sight on criticality of organization actors, knowledge-based measures provide
the most robust predictions of each actor’s contribution to organizational
performance.

Ashworth and Carley[As